Новый бульвар, д. 21 Пн-Пт: 9 00 - 21 00 Сб-Вс: 9 00 - 20 00

Сдвиг реакции крови в щелочную сторону называется

pH (кислотность) крови: что это, норма в анализе крови, как регулируется, когда меняется

Обычно такой показатель, как pH или кислотность крови (водородный показатель, параметр кислотно-щелочного равновесия, рН), как привыкли называть пациенты, не отмечен в направлении на гематологические анализы с целью обследования пациента. Являясь величиной постоянной, pH крови человека, может изменять свои значения только в строго обозначенных пределах – от 7,36 до 7,44 (в среднем – 7,4). Повышенная кислотность крови (ацидоз) или сдвиг водородного показателя в щелочную сторону (алкалоз) – состояния, которые развивается отнюдь не в результате воздействия благоприятных факторов и в большинстве случаев требуют незамедлительных терапевтических мероприятий.

Кровь не может выдерживать падения водородного показателя ниже 7 и повышения до 7,8, поэтому такие крайние значения pH, как 6,8 или 7,8 считаются недопустимыми и с жизнью не совместимыми. В некоторых источниках высокий предел совместимости с жизнью может отличаться от перечисленных значений, то есть, равняться 8,0.

Буферные системы крови

В кровь человека постоянно поступают продукты кислого или основного характера, но почему-то ничего не происходит? Оказывается, в организме все предусмотрено, на страже постоянства pH круглые сутки «дежурят» буферные системы, которые противостоят любым изменениям и не допускают сдвиг кислотно-щелочного равновесия в опасную сторону. Итак, по порядку:

  • Открывает список буферных систем бикарбонатная система, ее еще называют гидрокарбонатной. Она считается наиболее мощной, поскольку забирает на себя чуть больше 50% всех буферных способностей крови;
  • Второе место берет гемоглобиновая буферная система, она обеспечивает 35% всей буферной емкости;
  • Третье место принадлежит буферной системе белков крови – до 10%;
  • На четвертой позиции находится фосфатная система, на долю которой попадает около 6% всех буферных возможностей.

Данные буферные системы в поддержании постоянства pH первыми противостоят возможному сдвигу водородного показателя в ту или иную сторону, ведь процессы, поддерживающие жизнедеятельность организма, идут постоянно и при этом в кровь все время выбрасываются продукты либо кислого, либо основного характера. Между тем, буферная емкость почему-то не истощается. Это происходит потому, что на помощь приходит выделительная система (легкие, почки), которая рефлекторно включается всякий раз, когда в этом есть необходимость – она и выводит все накопившиеся метаболиты.

Как работают системы?

Главная буферная система

В основе деятельности бикарбонатной буферной системы, включающей в себя два компонента (H2CO3 и NaHCO3), лежит реакция между ними и поступающими в кровь основаниями или кислотами. Если в крови оказывается сильная щелочь, то реакция пойдет по такому пути:

NaOH + H2CO3 → NaHCO3 + H2O

Образованный в результате взаимодействия бикарбонат натрия, надолго в организме не задержится и, не оказав особого влияния, удалится почками.

На присутствие сильной кислоты отреагирует второй компонент бикарбонатной буферной системы — NaHCO3, который нейтрализует кислоту следующим образом:

HCl + NaHCO3 → NaCl + H2CO3

Продукт этой реакции (СО2) быстро покинет организм через легкие.

Гидрокарбонатная буферная система первой «чувствует» изменение водородного показателя, поэтому первой и начинает свою работу.

Гемоглобиновая и другие буферные системы

Основным компонентом гемоглобиновой системы является красный пигмент крови – Hb, pH которого меняется на 0,15 в зависимости от того, связывает он в данный момент кислород (сдвиг pH в кислую сторону) или отдает его тканям (сдвиг в щелочную сторону). Подстраиваясь под обстоятельства, гемоглобин играет роль или слабой кислоты, или нейтральной соли.

При поступлении оснований от гемоглобиновой буферной системы можно ожидать такого реакции:

NaOH + HHb → NaHb + H2O (рН почти не изменяется)

А с кислотой, лишь только она появится, гемоглобин начнет взаимодействовать следующим образом:

HCl + NaHb → NaCl + HHb (сдвиг pH не особо заметен)

Буферная емкость белков зависит от их основных характеристик (концентрация, структура и т. д.), поэтому буферная система белков крови не настолько участвует в поддержании кислотно-основного равновесия, как две предыдущие.

Фосфатная буферная система или натрий-фосфатный буфер в своей работе особого сдвига водородного показателя крови не дает. Она поддерживает значения pH на должном уровне в жидкостях, заполняющих клетки, и в моче.

pH в крови артериальной и венозной, плазме и сыворотке

Несколько отличается основной параметр кислотно-щелочного равновесия — pH в артериальной и венозной крови? Артериальная кровь более стабильна по показателям кислотности. Но, в принципе, норма pH на 0, 01 – 0,02 в насыщенной кислородом артериальной крови выше, нежели в крови, текущей по венам (показатели pH в венозной крови ниже за счет избыточного содержания СО2).

Что касается pH плазмы крови, то, опять-таки, в плазме баланс водородных и гидроксильных ионов, в общем-то, соответствует pH цельной крови.

Разниться показатели pH могут в других биологических средах, например, в сыворотке, однако плазма, покинувшая организм и лишенная фибриногена, уже не участвует в поддержании процессов жизнедеятельности, поэтому ее кислотность больше важна для других целей, например, для изготовления наборов стандартных гемагглютинирующих сывороток, которыми определяют групповую принадлежность человека.

Ацидоз и алкалоз

Сдвиг показателей pH в ту или иную сторону (кислая → ацидоз, щелочная → алкалоз) может быть компенсированным и некомпенсированным. Определяется он по щелочному резерву, представленному преимущественно бикарбонатами. Щелочной резерв (ЩР) – это количество углекислого газа в миллилитрах, вытесняемого сильной кислотой из 100 мл плазмы. Норма ЩР находится в границах 50 – 70 мл СО2. Отклонение от данных значений говорит о некомпенсированном ацидозе (менее 45 мл СО2) или алкалозе (более 70 мл СО2).

Различают такие виды ацидоза и алкалоза:

  • Газовый ацидоз – развивается при замедлении выведения углекислого газа легкими, создавая состояние гиперкапнии;
  • Негазовый ацидоз – имеет причиной накопление продуктов метаболизма или поступление их из желудочно-кишечного тракта (алиментарный ацидоз);
  • Первичный ренальный ацидоз – представляет собой нарушение реабсорбции в почечных канальцах с потерей большого количества щелочей.
  • Газовый алкалоз – возникает при повышенной отдаче СО2 легкими (высотная болезнь, гипервентиляция), формирует состояние гипокапнии;
  • Негазовый алкалоз – развивается при увеличении щелочных резервов за счет поступления оснований с пищей (алиментарный) или в связи с изменением обмена (метаболический).

Разумеется, восстановить кислотно-щелочное равновесие при острых состояниях самостоятельно, вероятнее всего, не получится, однако в другие времена, когда pH находится почти на пределе, а у человека вроде ничего и не болит, вся ответственность ложится на самого пациента.

Продукты, которые считаются вредными, а также сигареты и алкоголь, как правило, являются главной причиной изменения кислотности крови, хотя человек об этом и не знает, если дело не доходит до острых патологических состояний.

Понизить или повысить pH крови можно с помощью диеты, но не следует забывать: лишь только человек снова перейдет на любимый образ жизни, значения водородного показателя займут прежние уровни.

Таким образом, поддержание кислотно-основного баланса требует постоянной работы над собой, оздоровительных мероприятий, сбалансированного питания и правильного режима, иначе все краткосрочные труды пропадут даром.

Кислотно-основное состояние крови (КОС).

Кислотно-основное состояние крови (КОС).

Активная реакция крови обусловлена соотношением водородных и гидроксильных ионов. Д/iH определения активной реакции крови используют водородный показатель рН – концентрацию водородных ионов, которая выражается отрицательным десятичным логарифмом молярной концентрации ионов водорода. В норме рН – 7,36 (реакция слабоосновная); артериальной крови – 7,4; венозной – 7,35. При различных физиологических состояниях рН крови может изменяться от 7,3 до 7,5. Активная реакция крови является жесткой константой, обеспечивающей ферментативную деятельность. Крайние пределы рН крови, совместимые с жизнью, равны 7,0 – 7,8. Сдвиг реакции в кислую сторону называется ацидозом, который обусловливается увеличением в крови водородных ионов. Сдвиг реакции крови в щелочную сторону называется алкалозом. Это связано с увеличением концентрации гидроксильных ионов ОН и уменьшением концентрации водородных ионов.

В организме человека всегда имеются условия для сдвига активной реакции крови в сторону ацидоза или алкалоза, которые могут привести к изменению рН крови. В клетках тканей постоянно образуются кислые продукты. Накоплению кислых соединений способствует потребление белковой пищи. Напротив, при усиленном потреблении растительной пищи в кровь поступают основания. Поддержание постоянства рН крови является важной физиологической задачей и обеспечивается буферными системами крови. К буферным системам крови относятся гемоглобиновая, карбонатная, фосфатная и белковая.

Буферные системы нейтрализуют значительную часть по-ступающих в кровь кислот и щелочей, тем самым препятствуя сдвигу активной реакции крови. В организме в процессе метаболизма в большей степени образуется кислых продуктов. Поэтому запасы щелочных веществ в крови во много раз превышают запасы кислых. Их рассматривают как щелочной резерв крови.

Гемоглобиновая буферная система на 75% обеспечивает буферную емкость крови. Оксигемоглобин является более сильной кислотой, чем восстановленный гемоглобин. Оксигемоглобин обычно бывает в виде калиевой соли. В капиллярах тканей в кровь поступает большое количество кислых продуктов распада. Одновременно в тканевых капиллярах при диссоциации оксигемоглобина происходит отдача кислорода и появление большого количества щелочно реагирующих солей гемоглобина. Последние взаимодействуют с кислыми продуктами распада, например угольной кислотой. В результате образуются бикарбонаты и восстановленный гемоглобин. В легочных капиллярах гемоглобин, отдавая ионы водорода, присоединяет кислород и становится сильной кислотой, которая связывает ионы калия. Ионы водорода используются для образования угольной кислоты, в дальнейшем выделяющейся из легких в виде Н2О и СО2.

Карбонатная буферная система по своей мощности занимает второе место. Она представлена угольной кислотой (Н2СО3) и бикарбонатом натрия или калия (NaHCО3, КНСО3) в пропорции 1/20. Если в кровь поступает кислота, более сильная, чем угольная, то в реакцию вступает, например, бикарбонат натрия. Образуются нейтральная соль и слабодиссоциированная угольная кислота. Угольная кислота под действием карбоангидразы эритроцитов распадается на Н2О и СО2, последний выделяется легкими в окружающую среду. Если в кровь поступает основание, то в реакцию вступает угольная кислота, образуя гидрокарбонат натрия и воду. Избыток бикарбоната натрия удаляется через почки. Бикарбонатный буфер широко используется для коррекции нарушений кислотно-основного состояния организма.

Фосфатная буферная система состоит из натрия дигидрофосфата (NaH24) и натрия гидрофосфата (Na2HPО4). Первое соединение обладает свойствами слабой кислоты и взаимодействует с поступившими в кровь щелочными продуктами. Второе соединение имеет свойства слабой щелочи и вступает в реакцию с более сильными кислотами.

Белковая буферная система осуществляет роль нейтрализации кислот и щелочей благодаря амфотерным свойствам: в кислой среде белки плазмы ведут себя как основания, в основной – как кислоты.

Буферные системы имеются и в тканях, что способствует поддержанию рН тканей на относительно постоянном уровне. Главными буферами тканей являются белки и фосфаты.

Поддержание рН осуществляется также с помощью легких и почек. Через легкие удаляется избыток углекислоты. Почки при ацидозе выделяют больше кислого одноосновного фосфата натрия, а при алкалозе – больше щелочных солей: двухосновного фосфата натрия и бикарбоната натрия.

Активная реакция — кровь

Активная реакция крови ( рН), обусловленная соотношением в ней водородных ( Н) и гидроксильных ( ОН -) ионов, является одним из жестких параметров гомео-стаза, так как только при определенном РН возможно оптимальное течение обмена веществ. [1]

Активная реакция крови обнаруживает значительный сдвиг в кислую сторону. [2]

В тяжелых случаях интенсивное образование кислых продуктов расщепления жиров и дезаминирование аминокислот в печени вызывают сдвиг активной реакции крови в кислую сторону — ацидоз. [3]

Несмотря на наличие буферных систем и хорошую защищенность организма от возможных изменений рН, все же иногда при некоторых условиях наблюдаются небольшие сдвиги активной реакции крови . Сдвиг рН в кислую сторону называется ацидозом, сдвиг в щелочную сторону — алкалозом. [4]

У здорового человека содержание хлоридов в крови при пересчете на хлористый натрий составляет 450 — 550 мг %, в плазме — 690 мг %, в эритроцитах почти в 2 раза меньше, чем в плазме. Хлориды принимают участие в газообмене и в регуляции активной реакции крови . Хлориды крови расходуются на образование соляной кислоты желудочного сока. Большие запасы хлористого натрия содержатся в коже и в печени. При некоторых патологических состояниях организма ( заболевание почек и др.) хлориды задерживаются во всех тканях и особенно в подкожной клетчатке. Задержка хлоридов сопровождается задержкой воды и образованием отеков. При лихорадочных заболеваниях, бронзовой болезни содержание хлоридов в крови сильно понижается. Резкое снижение содержания хлоридов в крови может наступить, при введении в организм большого количества ртутных препаратов и служит сигналом наступающего ртутного отравления. [5]

Пребывание в закрытом помещении в течение 8 — 10 ч, при постепенном повышении содержания СО2 до 5 5 % и падении содержания О2 до 14 5 %, к концу опыта приводило к резкому возрастанию легочной вентиляции ( до 30 — 35 л), увеличению потребления О2 на 50 % ( за счет увеличенной работы дыхательных мышц), сдвигу активной реакции крови в кислую сторону, замедлению или ничтожному учащению пульса, повышению кровяного давления, особенно минимального, понижению температуры тела на 0 5 ( если не повышается температура окружающего воздуха), падению физической работоспособности, к головной боли и незначительному понижению умственной работоспособности. [6]

В крови малярика присходят сложные физико-химические процессы благодаря присутствию плазмодиев. Внедрение плазмодиев в эритроциты, их разбухание, нарушение обмена и другие явления влияют на физико-химию крови. Многие ученые считают, что активная реакция крови играет очень существенную роль при малярии. Сдвиг в кислую сторону активирует инфекцию, в щелочную — тормозит ее. Отрицательные аэроионы увеличивают в крови число щелочных ионов. Это должно отразиться на жизненных отправлениях плазмодиев. В самом деле, уж не благодаря ли сдвигу активной реакции крови возникает благоприятный эффект при применении отрицательных аэроионов для лечения малярии. [7]

Пребывание в закрытом помещении в течение 8 — 10 час, при постепенном повышении СО2 до 5 5 % и падении содержания О2 до 14 5 %, к концу опыта к резкому возрастанию легочной вентиляции ( до 30 — 35 л), уве-потребления О2 на 50 % ( за счет увеличенной работы дыхательных у активной реакции крови в кислую сторону, замедлению или учащению пульса, повышению кровяного давления, особенно э, понижению температуры тела на 0 5 ( если не повышается температура окружающего воздуха), падению физической работоспособности, головной боли и незначительному понижению умственной работоспособности. [8]

Особенно важно нарушение терморегуляции из-за повышения температуры и влажности среды Аверьянов и др.) — При 4-часовом пребывании в герметически закрытом помещении, в котором концентрация СО2 возрастала постепенно от 0 48 до 4 7 %, а содержание О2 падало от 20 6 до 15 8 %, часть лиц жаловалась к концу опыта на духоту, легкую головную боль, наблюдалось понижение температуры, учащение дыхания, замедление или учащение пульса. Пребывание в закрытом помещении в течение 8 — 10 час, при постепенном повышении содержания СО2 Д 5 5 % и падении содержания О2 до 14 5 %, к концу опыта приводило к резкому возрастанию легочной вентиляции ( до 30 — 35 л), увеличению потребления О2 на 50 % ( за счет увеличенной работы дыхательных мышц), сдвигу активной реакции крови в кислую сторону, замедлению или ничтожному учащению пульса, повышению кровяного давления, особенно минимального, понижению температуры тела на 0 5 ( если не повышается температура окружающего воздуха), падению физической работоспособности, головной боли и незначительному понижению умственной работоспособности. [9]

В крови малярика присходят сложные физико-химические процессы благодаря присутствию плазмодиев. Внедрение плазмодиев в эритроциты, их разбухание, нарушение обмена и другие явления влияют на физико-химию крови. Многие ученые считают, что активная реакция крови играет очень существенную роль при малярии. Сдвиг в кислую сторону активирует инфекцию, в щелочную — тормозит ее. Отрицательные аэроионы увеличивают в крови число щелочных ионов. Это должно отразиться на жизненных отправлениях плазмодиев. В самом деле, уж не благодаря ли сдвигу активной реакции крови возникает благоприятный эффект при применении отрицательных аэроионов для лечения малярии. [10]

Начиная с 4 — 5 %, а при медленном повышении содержания СОа в воздухе-при более высоких концентрациях ( — 8 % и выше) лоявляются ощущение раздражения слизистых оболочек дыхательных путей, кашель, ощущение тепла в груди, раздражение глаз, пцтливость, чувство сдавливания головы, головные боли, шум в ушах, повышение кровяного давления ( особенно у гипертоников), сердцебиение, психическое возбуждение, головокружение, реже рвота. Число дыханий в 1 мин. СОа до 8 % значительно не увеличивается; при более высоких концентрациях дыхание учащается. При переходе на вдыхание нормального воздуха — часто тошнота и рвота. По зарубежным данным, концентрацию 6 % подопытные лица выдерживали добровольно до 22 мин, 10 4 % — не более 0 5 мин. Пребывание в закрытом помещении в течение 8 — 10 час, при постепенном повышении содержания СО2 до 5 5 % и падении содержания О2 до 14 5 %, к концу опыта приводило к резкому возрастанию легочной вентиляции ( до 30 — 35 л), увеличению потребления О2 на 50 % ( за счет увеличенной работы дыхательных мышц), сдвигу активной реакции крови в кислую сторону, замедлению или ничтожному учащению пуЛьса, повышению кровяного давления, особенно минимального, понижению температуры тела на 0 5 ( если не повышается температура окружающего воздуха), падению физической работоспособности, головной боли и незначительному понижению умственной работоспособности, увеличение скорости нарастания концентрации СО2 при одинаковом конечном ее содержании утяжеляло состояние человека. [11]

Активная реакция крови

Активная реакция крови (pH) обусловлена соотношением в ней Н + и OН- ионов. Кровь имеет слабощелочную реакцию. pH артериальной крови — 7,4, венозной — 7,35. Крайние пределы изменения pH, совместимые с жизнью — 7,0-7,8.

Сдвиг pH крови в кислую сторону — ацидоз, в щелочную — алкалоз. Как ацидоз, так и алкалоз могут быть дыхательными, метаболическими, компенсированными и некомпенсированными.

Кровь имеет 4 буферные системы, которые поддерживают постоянство pH.

1. Буферная система гемоглобина. Эта система представлена восстановленным гемоглобином (ННb) и его калиевой солью (КНb). В тканях Нb выполняет функцию щелочи, присоединяя Н +, а в легких функционирует как кислота, отдавая Н +.

2. Карбонат-бикарбонатная буферная система — представлена угольной кислотой в недиссоциированных и диссоциированных состояниях: Н2СO3 ↔ Н + + НСO3-. Если в крови увеличивается количество Н +, реакция идет влево. Ионы Н + связываются с анионом НСO3- с образованием дополнительного количества недиссоциированной угольной кислоты (Н2СO3). При возникновении дефицита Н + реакция идет вправо. Мощность этой системы определяется тем, что Н2СO3 в организме находится в состоянии равновесия с СО2: Н2СO3 ↔ СО2 + Н2О (реакция происходит при участии карбоангидразы эритроцитов). При росте в крови напряжения СО2 одновременно возрастает концентрация Н +. избыток

СО выделяется легкими при дыхании, a H + — почками. При уменьшении напряжения СО2 его выделение легкими при дыхании уменьшается. В конечном виде функционирования карбонат-бикарбонатной буферной системы можно представить следующим образом:

3. Фосфатная буферная система образована:

а) фосфат NaH2PO4 — функционирует как слабая кислота

б) фосфат Na2HPO4 — функционирует как щелочь.

Функционирование фосфатной буферной системы можно представить следующим образом:

Концентрация фосфатов в плазме крови мала для того, чтобы эта система играла значительную роль, однако она имеет важное значение для поддержания внутриклеточного pH и pH мочи.

4. Буферная ситема белков плазмы крови. Белки являются эффективными буферными системами, поскольку способность к диссоциации имеют как карбоксил, так и аминные свободные группы:

Значительно больший вклад в создание буферной емкости белков вносят боковые группы, способные ионизироваться, особенно имидазольное кольцо гистидина.

При клинической оценке кислотно-щелочного равновесия в комплексе показателей важное значение имеют pH артериальной крови, напряжение СО2, стандартный бикарбонат плазмы крови ( standart bicarbonateSB; составляет 22- 26 ммоль / л представляет собой содержание бикарбонатов в плазме крови, полностью насыщенной кислородом при напряжении углекислого газа 40 мм рт.ст, и температуре 37 ° С) и содержание в плазме анионов всех слабых кислот (прежде всего бикарбонаты и анионные группы белков). Все эти вместе взятые анионы называются буферными основаниями (buffer bases — ВВ). Содержание ВВ в артериальной крови составляет 48 ммоль / л.

Эритроциты

Имеют форму двояковогнутого диска, безъядерные. Содержание в крови: у мужчин — 4,5-5,5 млн в 1 мм 3 или 4,5-5,5 × 10 12 / л у женщин — 3,8-4,5 млн в 1 мм 3 или 3,8 -4,5 × 1010 12 / л.

Эритроцит является сложной системой, структура и функционирование которой поддерживается специальными физико-химическими механизмами для создания оптимальных условий обмена кислорода и углекислого газа. Важное место в этом занимает мембрана эритроцита. В эритроцитарной мембране различают три основные составляющие: липидный бислой, интегральные белки и цитоскелетного каркас. Выделяют пять основных белков и большое количество меньших, т. Н. минорных. Большим интегральным белком является гликофорина, который участвует в транспортировке глюкозы. Внешний конец его молекулы содержит цепочки углеводородов и несколько выступает над поверхностью мембраны. Именно на нем расположены антигенные детерминанты, которые определяют группу крови по системе АВ0.

Другим белком мембраны эритроцита является спектрин. Молекулы спектрина связываются с белками и липидами на внутренней поверхности мембраны, в том числе с Микрофиламентов актина, и формируют сетку, которая играет роль каркаса. Бислой липидов является асимметричным, и за правильность этой асимметрии соответствуют внутришньомембранни белки флипазы. В эритроцитах также присутствуют аквапорины, которые осуществляют транспортировку молекул воды. Кроме того, эритроцитарная мембрана имеет заряд и обладает избирательной проницаемостью. Сквозь нее свободно проходят газы, вода, ионы водорода, анионы хлора, гидроксильного радикала, хуже — глюкоза, мочевина, ионы калия и натрия, и она практически не пропускает большинство катионов и совсем не пропускает белки.

Мембрана эритроцитов в 100 раз эластичная, чем мембрана из латекса такой же толщины, и устойчива, чем сталь, с точки зрения структурного сопротивления.

Эритроцит содержит более 140 ферментов. Его объем составляет 90 fL, площадь поверхности составляет 140 pm, что на 40% больше площади поверхности шарика такого же объема. Эритроциты в венозной крови больше по размеру, чем в артериальной. Это связано с тем, что в процессе газообмена внутри них накапливается больше солей, вслед за которыми, по законам осмоса поступает вода.

Общая площадь поверхности всех эритроцитов составляет около 3800 м2, что в 1500 раз больше площади поверхности тела человека!

Размер эритроцита мыши и слона примерно одинаковый!

Формирования и поддержания формы двояковогнутого диске обеспечивается рядом механизмов. Ключевую роль в этом играют тесная связь мембранных белков с белками цитоскелета, различные виды ионного транспорта через мембрану и изотоничность осмотического давления. Интересен факт, что в зависимости от колебаний этого давления, объем эритроцита может меняться в пределах нормы от 20 до 200 fL, но концентрация гемоглобина поддерживается в очень узких пределах (30-35 g / dL). Это связано с тем, что эритроцитарный объем и форма также зависит и от вязкости цитоплазмы, которая обеспечивается концентрацией гемоглобина. Установлено, что вязкость гемоглобина при его концентрации 27 g / dL составляет 0,05 Па, что в 5 раз больше вязкости воды. При концентрации 37 g / dL — 0,15 Па, возрастает до 0,45 Па при концентрации 40 g / dL, составляет 0,170 Па при 45 g / dL и достигает 650 Па при 50 g / dL. Поэтому концентрация гемолобину играет важную роль в поддержании объема красных кровяных телец.

Образуются в красном костном мозге, разрушаются в печени и селезенке. Продолжительность жизни — 120 суток. Для образования эритроцитов необходимы «строительные материалы» и стимуляторы этого процесса. Для синтеза гема в сутки необходимо 20-25 мг железа, поступления витаминов В12, С, В2, В6, фолиевой кислоты.

Каждый час кровь циркулирует в организме, покидают 5000000000 старых эритроцитов, 1000000000 старых лейкоцитов и 2 миллиарда тромбоцитов. Столько же новых форменных элементов поступает в нее из красного костного мозга. Таким образом, за сутки полностью меняется 25 грамм массы крови. В плазме является С секстильоны различных молекул. Это огромное количество молекул белков, углеводов, жиров, солей, витаминов, гормонов, ферментов. Все они постоянно обновляются, распадаются и вновь синтезируются, а состав крови остается постоянным!

Увеличение количества эритроцитов крови — эритроцитоз , уменьшение — эритропения .

Функции эритроцитов:

5) регуляция pH крови.

В состав эритроцитов входит гемоглобин, который является гемпротеидом. Нb участвует в транспорте O2 и СО2. Состоит гемоглобин с белковой и небелковой частей: глобина и гема. Гем удерживает атом Fe2 +. Содержание Нb у мужчин 14-16 г /%, или 140-160 г / л; у женщин: 12-14 г /%, или 120-140 г / л.

В крови гемоглобин может быть в виде нескольких соединений:

1) Оксигемоглобин — Нb + O2 (в артериальной крови), соединения, легко распадается. 1 г гемоглобина присоединяет 1,34 мл O2.

2) карбгемоглобин Нb + СО2 (в венозной крови), легко распадается.

3) Карбоксигемоглобин Hb + СО (угарный газ), очень стойкое соединение. Нb теряет сродство к 02.

4) Метгемоглобин образуется в случае попадания в организм сильных окислителей. В результате в геми Fe2 + превращается в Fe3 +. Накопление большого количества такого гемоглобина делает транспорт O2 невозможным и организм погибает.

Гемолиз — это разрушение оболочки эритроцитов и выход Нb в плазму крови.

Уменьшение осмотического давления вызывает набухание эритроцитов, а затем их разрушения (осмотическое гемолиз). По мере осмотического устойчивости (резистентности) эритроцитов является концентрация NaCl, при которой начинается гемолиз. У человека это происходит в 0,45-0,52% растворе ( минимальная осмотическая резистентность), в 0,28-0,32% растворе разрушаются все эритроциты (максимальная осмотическая резистентность).

Химический гемолиз — происходит под влиянием веществ, которые разрушают оболочку эритроцитов (эфир, хлороформ, алкоголь, бензол).

Механический гемолиз — возникает при сильных механических воздействий на кровь.

Термический гемолиз — замораживание с последующим нагреванием.

Биологический — переливание несовместимой крови, укусы змей.

Цветовой показатель — характеризует соотношение количества гемоглобина и числа эритроцитов в крови и, тем самым, степень насыщенности каждого эритроцита гемоглобином. В норме составляет 0,85-1,0. Определяют цветовой показатель по формуле: 3 × Нb (в г / л) / три первые цифры количества эритроцитов в мкл.

СОЭ (скорость оседания эритроцитов). У мужчин СОЭ — 2-10 мм / час, у женщин СОЭ — 1-15 мм / час. Зависит от свойства плазмы и прежде всего от содержания в плазме белков глобулинов и фибриногена. Количество глобулинов увеличивается при воспалительных процессах.

Количество фибриногена увеличивается у беременных женщин в 2 раза и СОЭ при этом достигает 40-50 мм / час.

Источник: baby-clinic-vozr.ru

Ссылка на основную публикацию
Похожие публикации